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Abstract. The tunneling of a giant spin at excited levels is studied theoretically in mesoscopic magnets
with a magnetic field at an arbitrary angle in the easy plane. Different structures of the tunneling barriers
can be generated by the magnetocrystalline anisotropy, the magnitude and the orientation of the field. By
calculating the nonvacuum instanton solution explicitly, we obtain the tunnel splittings and the tunneling
rates for different angle ranges of the external magnetic field (θH = π/2 and π/2 < θH < π). The
temperature dependences of the decay rates are clearly shown for each case. It is found that the tunneling
rate and the crossover temperature depend on the orientation of the external magnetic field. This feature
can be tested with the use of existing experimental techniques.

PACS. 75.45.+j Macroscopic quantum phenomena in magnetic systems – 75.50.Mm Magnetic liquids

1 Introduction

Recently, nanospin systems have emerged as good can-
didates to display quantum phenomena at a meso-
scopic or macroscopic scale [1]. Theoretical investigations
showed that quantum tunneling was possible in ferromag-
netic (FM) nanoparticles containing as much as 105−106

spins [1]. At extremely low temperature, the magnitude
of the total magnetization M is frozen out and thereby
its direction becomes the only dynamical variable. In the
absence of an external magnetic field, the magnetocrys-
talline anisotropy can create energetically degenerate easy
directions depending on the crystal symmetry. Tunnel-
ing between neighboring states removes the degeneracy
of the original ground states and leads to a level splitting.
This phenomenon is called macroscopic quantum coher-
ence (MQC). However, MQC is hard to be observed in
experiments without controlling the height and the width
of the barrier. It has been believed that a magnetic field is
a good external parameter to make the quantum tunnel-
ing observable. By applying a magnetic field in a proper
direction, one of the two energetically equivalent orienta-
tions becomes metastable and the magnetization vector
can escape from the metastable state through the bar-
rier to a stable one, which is called macroscopic quan-
tum tunneling (MQT). A large number of experiments
involving resonance measurements, magnetic relaxation,
and hysteresis loop study, Mössbauer spectroscopy, and
neutron scattering study for various systems showed either
temperature-independent relaxation phenomena or a well-
defined resonance depending exponentially on the number
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of total spins, which supported the idea of magnetic quan-
tum tunneling [1].

To our knowledge, the tunneling of a single spin
degree of freedom was first studied by Korenblit and
Shender in 1978 [2]. More recently, the tunneling problem
of the magnetization reversal was studied extensively for
the single-domain FM nanoparticles in a magnetic field
applied at an arbitrary angle. This problem was stud-
ied by Zaslavskii with the help of mapping the spin sys-
tem onto a one-dimensional particle system [3]. For the
same system, Miguel and Chudnovsky [4] calculated the
tunneling rate by applying the imaginary-time path inte-
gral, and demonstrated that the angular and field depen-
dences of the tunneling exponent obtained by Zaslavskii’s
method and by the path-integral method coincide pre-
cisely. Kim and Hwang performed a calculation based
on the instanton technique for FM particles with biaxial
and tetragonal crystal symmetry [5], and Kim extended
the tunneling rate for biaxial crystal symmetry to a fi-
nite temperature [6]. The quantum-classical transition of
the escape rate for uniaxial spin system in an arbitrar-
ily directed field was investigated by Garanin, Hidalgo
and Chudnovsky with the help of mapping onto a par-
ticle moving in a double-well potential [7]. The switching
field measurement was carried out on single-domain FM
nanoparticles of Barium ferrite (BaFeCoTiO) containing
about 105−106 spins [8]. The measured angular depen-
dance of the crossover temperature was found to be in
excellent agreement with the theoretical prediction [4],
which strongly suggests the quantum tunneling of magne-
tization in the BaFeCoTiO nanoparticles. Lü et al. stud-
ied the quantum tunneling of the Néel vector in single-
domain antiferromagnetic (AFM) nanoparticles with
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biaxial, tetragonal, and hexagonal crystal symmetry in an
arbitrarily directed field [9].

It is noted that the previous results of spin tunneling at
excited levels in an arbitrarily directed field were obtained
by numerically solving the equation of motion satisfied by
the least trajectory [6], and the system considered in refer-
ence [6] had the simple biaxial crystal symmetry. The pur-
pose of this paper is to present an analytical study of the
quantum tunneling at excited levels in the FM particles
with an arbitrarily directed field. Moreover, the system
considered in this paper has a much more complex struc-
ture (i.e., the general structure in experiments), such as
trigonal, tetragonal, and hexagonal crystal symmetry. By
applying an arbitrarily directed magnetic field, the prob-
lem does not possess any symmetry and for that reason is
more difficult mathematically. However, it is worth pur-
suing because of its significance for experiments and the
easiest to implement in practice. Since the result of spin
tunneling at excited levels for tetragonal symmetry is a
generalization of that of tunneling at ground-state levels
studied by Kim and Hwang [5], we can compare our results
with theirs by taking the low-energy limit. We will show
that MQC and MQT can be consecutively observed by
changing the direction of magnetic field, and discuss their
dependence on the direction and the magnitude of field.
The dependence of the crossover temperature Tc and the
magnetic viscosity (which is the inverse of WKB exponent
at the quantum-tunneling-dominated regime T � Tc) on
the direction and the magnitude of the field, and the mag-
netic anisotropies is expected to be observed in future
experiments on individual single-domain particles with
different magnetocrystalline anisotropies. Both the non-
vacuum (or thermal) instanton or bounce solution, the
WKB exponents and the preexponential factors are eval-
uated exactly for different angle ranges of the magnetic
field (θH = π/2 and π/2 < θH < π). The low-energy
limit of our results agrees well with that of ground-state
spin tunneling. In order to compare theories with exper-
iments, predictions of the crossover temperature corre-
sponding to the transition from classical to quantum be-
havior and the temperature dependence of the decay rate
are clearly shown in this paper. Both variables are ex-
pressed as a function of parameters which can be changed
experimentally, such as the number of total spins, the ef-
fective anisotropy constants, the strength and orientation
of applied magnetic field. Our results show that the dis-
tinct angular dependence, together with the dependence
of the WKB tunneling rate on the strength of the external
magnetic field, may provide an independent experimental
test for the spin tunneling at excited levels in nanoscale
magnets. When the effective magnetic anisotropy of the
particle is known, our theoretical results give clear pre-
dictions with no fitting parameters. Therefore, quantum
spin tunneling could be studied as a function of the ef-
fective magnetic anisotropy. Our results should be helpful
for future experiments on spin tunneling in single-domain
particles with different magnetocrystalline anisotropies.

This paper is structured in the following way. In Sec-
tion 2, we review briefly some basic ideas of spin tun-

neling in FM particles. And we discuss the fundamentals
concerning the computation of level splittings and tunnel-
ing rates of excited states in the double-well-like poten-
tial. In Sections 3, 4, and 5, we study the spin tunneling
at excited levels for FM particles with trigonal, tetrago-
nal and hexagonal crystal symmetry in an external mag-
netic field applied in the ZX plane with a range of angles
π/2 ≤ θH < π, respectively. The conclusions are presented
in Section 6.

2 Physical model of spin tunneling
in FM particles

For a spin tunneling problem, the tunnel splitting or
the tunneling rate is determined by the imaginary-time
transition amplitude from an initial state |i〉 to a final
state |f〉 as

Ufi = 〈f | e−HT |i〉 =
∫
DΩ exp (−SE) , (1)

where SE is the Euclidean action and DΩ is the measure
of the path integral. In the spin-coherent-state represen-
tation, the Euclidean action is

SE (θ, φ) =
V

~

∫
dτ
[
i
M0

γ

(
dφ
dτ

)
−i
M0

γ

(
dφ
dτ

)
cos θ +E (θ, φ)

]
, (2)

where V is the volume of the FM particle and γ is the gyro-
magnetic ratio. M0 = |M| = ~γS/V , where S is the total
spin of FM particles. It is noted that the first two terms
in equation (2) define the Berry phase or Wess-Zumino,
Chern-Simons term which arises from the nonorthogonal-
ity of spin coherent states in the north-pole parametriza-
tion. The Wess-Zumino term has a simple topological in-
terpretation. For a closed path, this term equals −iS times
the area swept out on the unit sphere between the path
and the north pole. The first term in equation (2) is a to-
tal imaginary-time derivative, which has no effect on the
classical equations of motion, but it is crucial for the spin-
parity effects [1,10–14]. However, for the closed instanton
or bounce trajectory described in this paper (as shown in
the following), this time derivative gives a zero contribu-
tion to the path integral, and therefore can be omitted.

In the semiclassical limit, the dominant contribution to
the transition amplitude comes from finite action solution
(instanton or bounce) of the classical equation of motion.
The instanton’s contribution to the tunneling rate Γ or
the tunnel splitting ∆ is given by [1]

Γ (or ∆) = Aωp

(
Scl

2π

)1/2

e−Scl , (3)

where ωp is the oscillation frequency in the well, Scl is the
classical action, and the prefactor A originates from the
quantum fluctuations about the classical path. It is noted
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that equation (3) is based on quantum tunneling at the
level of ground state, and the temperature dependence of
the tunneling rate (i.e., tunneling at excited levels) is not
taken into account. However, the instanton technique is
suitable only for the evaluation of the tunneling rate or
the tunnel splitting at the vacuum level, since the usual
(vacuum) instantons satisfy the vacuum boundary condi-
tions. In this paper, we will calculate the nonvacuum in-
stantons corresponding to quantum tunneling at excited
levels.

For a particle moving in a double-well-like potential
U (x), the level splittings of degenerate excited levels or
the imaginary parts of the metastable levels at an energy
E > 0 are given by the following formula in the WKB
approximation [16],

∆E (or ImE) =
ω (E)
π

exp [−S (E)] , (4)

and the imaginary-time action is

S (E) = 2
√

2m
∫ x2(E)

x1(E)

dx
√
U (x)−E, (5)

where x1,2 (E) are the turning points for the particle os-
cillating inside the inverted potential −U (x). ω (E) =
2π/t (E) is the energy-dependent frequency, and t (E) is
the period of the real-time oscillation in the potential well,

t (E) =
√

2m
∫ x4(E)

x3(E)

dx√
E − U (x)

, (6)

where x3,4 (E) are the turning points for the particle os-
cillating inside the potential U (x).

3 MQC and MQT for trigonal crystal
symmetry

In this section, we study the quantum tunneling of the
magnetization vector in single-domain FM nanoparticles
with trigonal crystal symmetry. The external magnetic
field is applied in the ZX plane, at an angle in the range
of π/2 ≤ θH < π. Now the total energy E (θ, φ) can be
written as

E (θ, φ) =K1 sin2 θ −K2 sin3 θ cos (3φ)
−M0Hx sin θ cosφ−M0Hz cos θ +E0, (7)

where K1 and K2 are the magnetic anisotropy constants
satisfying K1 � K2 > 0, and E0 is a constant which
makes E (θ, φ) zero at the initial orientation. As the mag-
netic field is applied in the ZX plane, Hx = H sin θH and
Hz = H cos θH , where H is the magnitude of the field and
θH is the angle between the magnetic field and the ẑ axis.

By introducing the dimensionless parameters as

K2 = K2/2K1,Hx = Hx/H0,Hz = Hz/H0, (8)

equation (7) can be rewritten as

E (θ, φ) =
1
2

sin2 θ −K2 sin3 θ cos (3φ)

−Hx sin θ cosφ−Hz cos θ +E0, (9)

where E (θ, φ) = 2K1E (θ, φ), and H0 = 2K1/M0. At fi-
nite magnetic field, the plane given by φ = 0 is the easy
plane, on which E (θ, φ) reduces to

E (θ, φ = 0) =
1
2

sin2 θ −K2 sin3 θ

−H cos (θ − θH) +E0. (10)

We denote θ0 to be the initial angle and θc the crit-
ical angle at which the energy barrier vanishes when
the external magnetic field is close to the critical value
Hc (θH) (to be calculated in the following). Then, the
initial angle θ0 satisfies

[
dE (θ, φ = 0) /dθ

]
θ=θ0

= 0,
the critical angle θc and the dimensionless critical field
Hc satisfy both

[
dE (θ, φ = 0) /dθ

]
θ=θc,H=Hc

= 0 and[
d2E (θ, φ = 0) /dθ2

]
θ=θc,H=Hc

= 0. After some algebra,
Hc (θH) and θc are found to be

Hc =
1[

(sin θH)2/3 + |cos θH |2/3
]3/2

×

1− 3K2
1(

1 + |cot θH |2/3
)1/2

+6K2
1(

1 + |cot θH |2/3
)3/2

 , (11a)

sin2 θc =
1

1 + |cot θH |2/3

1− 2K2
|cot θH |2/3(

1 + |cot θH |2/3
)1/2

−4K2
|cot θH |2/3(

1 + |cot θH |2/3
)3/2

 · (11b)

Now we consider the limiting case that the ex-
ternal magnetic field is slightly lower than the criti-
cal field, i.e., ε = 1 − H/Hc � 1. At this practi-
cally interesting situation, the barrier height is low and
the width is narrow, and therefore the tunneling rate
in MQT or the tunnel splitting in MQC is large. In-
troducing η ≡ θc − θ0 (|η| � 1 in the limit of ε� 1),
expanding

[
dE (θ, φ = 0) /dθ

]
θ=θ0

= 0 about θc, and
using the relations

[
dE (θ, φ = 0) /dθ

]
θ=θc,H=Hc

= 0
and

[
d2E (θ, φ = 0) /dθ2

]
θ=θc,H=Hc

= 0, we obtain the
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approximation equation for η in the order of ε3/2,

−εHc sin (θc − θH)− η2

(
3
4

sin 2θc + 3K2 cos 3θc

)
+ η

×
[
εHc cos (θc − θH) + η2

(
1
2

cos 2θc − 3K2 sin 3θc

)]
=0.

(12)

Then E (θ, φ) reduces to the following equation in the limit
of small ε,

E (δ, φ) = 2K2 sin2 (3φ/2) sin3 (θ0 + δ)

+Hx sin (θ0 + δ) (1− cosφ) +E1 (δ) , (13)

where δ ≡ θ − θ0 (|δ| � 1 in the limit of ε� 1), and
E1 (δ) is a function of only δ given by

E1 (δ) = − 1
2

[
Hc sin (θc − θH)−K2

(
cos3 θc

−3
2

sin2 θc cos θc

)](
3δ2η − δ3

)
− 1

2
[
Hc

× cos (θc − θH)− 3K2

(
sin3 θc − 4 sin θc

× cos2 θc

)] [
δ2

(
ε− 3

2
η2

)
+ δ3η − 1

4
δ4

]
− 3

2
K2

(
sin3 θc − 4 sin θc cos2 θc

)
δ2ε. (14)

In the following, we will investigate the tunneling be-
haviors of the magnetization vector at excited levels in
FM particles with trigonal crystal symmetry at different
angle ranges of the external magnetic field as θH = π/2
and π/2 < θH < π, respectively.

3.1 θH = π/2

For θH = π/2, we have θc = π/2 from equation (11b) and
η =
√

2ε
(
1 + 9

2K2

)
from equation (12). Equations (13, 14)

show that φ is very small for the full range of angles π/2 ≤
θH < π. Performing the Gaussian integration over φ, we
can map the spin system onto a particle moving problem
in the one-dimensional potential well. Now the imaginary-
time transition amplitude equations (1, 2) becomes

Ufi =
∫

dδ exp (−SE [δ]) ,

=
∫

dδ exp

{
−
∫

dτ

[
1
2
m

(
dδ
dτ

)2

+ U (δ)

]}
, (15)

with the effective mass

m =
~S2

2VK1

[
1− ε+ 9K2

] ,
and the effective potential

U (δ) =
K1V

4~
δ2 (δ − 2η)2 . (16)
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Fig. 1. The δ (= θ − θ0) dependence of the effective potential
E1 (δ) for θH = π/2 (MQC).

The plot of the effective potential E1 (δ) as a function
of δ (= θ − θ0) for θH = π/2 is shown in Figure 1, and
~U (δ) = 2K1V E1 (δ). The problem is one of MQC, where
the magnetization vector resonates coherently between the
energetically degenerate easy directions at δ = 0 and δ =
2
√

2ε
(
1 + 9

2K2

)
separated by a classically impenetrable

barrier at δ =
√

2ε
(
1 + 9

2K2

)
.

The nonvacuum (or thermal) instanton configuration
δp which minimizes the Euclidean action in equation (16)
satisfies the equation of motion

1
2
m

(
dδp
dτ

)2

− U (δp) = −E, (17)

where E > 0 is a constant of integration, which can be
viewed as the classical energy of the pseudoparticle con-
figuration. Then the kink-solution is

δp = η +
√
η2 − αsn (ω1τ, k) , (18)

where α = 2
√

~E
K1V

, and ω1 =
√

K1V
2~m

√
η2 + α. sn(ω1τ, k)

is the Jacobian elliptic sine function of modulus k =√
η2−α
η2+α . The Euclidean action of the nonvacuum instan-

ton configuration equation (18) over the domain (−β, β)
is found to be

Sp =
∫ β

−β
dτ

[
1
2
m

(
dδp
dτ

)2

+ U (δp)

]
= W + 2Eβ,

(19a)

with

W =
8
3

√
K1V m

~

(
1 +

27
2
K2

)
ε3/2

× 1√
1− k′2/2

[
E (k)− k′2

2− k′2K (k)
]
, (19b)
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where k′2 = 1−k2, and β = 1/kBT with kB the Boltzmann
constant. K (k) and E (k) are the complete elliptic inte-
gral of the first and second kind, respectively. The gen-
eral formula equation (4) gives the tunnel splittings of ex-
cited levels as ∆E = ω(E)

π exp (−W ), where W is shown in
equation (19b), and ω (E) = 2π

t(E) is the energy-dependent
frequency. For this case, the period t (E) is found to be

t (E) =
√

2m
∫ δ2

δ1

dδ√
E − U (δ)

= 2
√

2~m
K1V

1√
η2 + α

K (k′) , (20)

where δ1 = η +
√
η2 − α, and δ2 = η +

√
η2 + α. Now we

discuss the low energy limit where E is much less than
the barrier height. In this case, k′4 = 16~E

K1V η4 � 1, so we
can perform the expansions of K (k) and E (k) in equa-
tion (19b) to include terms like k′4 and k′4 ln

(
4
k′

)
,

E (k) = 1 +
1
2

[
ln
(

4
k′

)
− 1

2

]
k′2

+
3
16

[
ln
(

4
k′

)
− 13

12

]
k′4 . . . ,

K (k) = ln
(

4
k′

)
+

1
4

[
ln
(

4
k′

)
− 1
]
k′2

+
9
64

[
ln
(

4
k′

)
− 7

6

]
k′4 . . .

With the help of small oscillator approximation for energy
near the bottom of the potential well, En =

(
n+ 1

2

)
Ω1,

Ω1 =
√

1
mU

′′ (δ = 0) = η
√

2K1V
~m , equation (19b) is ex-

panded as

W =W0 −
(
n+

1
2

)
+
(
n+

1
2

)
× ln

[
1− ε

2 −
15
2 K2

29/2Sε3/2

(
n+

1
2

)]
, (21a)

where

W0 =
25/2

3
Sε3/2

(
1 +

ε

2
+

15
2
K2

)
· (21b)

Then the low-lying energy shift of n-th excited states for
FM particles with trigonal crystal symmetry in the pres-
ence of an external magnetic field applied perpendicular
to the anisotropy axis (θH = π/2) is

~∆En =
2

n!
√
π

(K1V ) ε1/2S−1

(
1− ε

2
+

21
2
K2

)

×
(

29/2Sε3/2

1− ε
2 −

15
2 K2

)n+1/2

exp (−W0) . (22)

For n = 0, the energy shift of the ground state is

~∆E0 =
213/4

√
π

(K1V ) ε5/4S−1/2

×
(

1− ε

4
+

57
4
K2

)
exp (−W0) . (23)

Then equation (22) can be written as

~∆En =
qn1
n!

(~∆E0) , (24a)

where

q1 =
29/2Sε3/2

1− ε
2 −

15
2 K2

· (24b)

Since we have obtained the tunnel splittings at ex-
cited levels, it is reasonable to study the temperature
dependence of the tunneling rate. It is noted that equa-
tions (24a, 24b) are obtained under the condition that the
levels in the two wells are degenerate. In more general
cases, the transition amplitude between two levels sepa-
rated by the barrier or the decay rate should be sensitive
to this resonance condition for the two levels. If in the
case of the potential with two degenerate levels only one
of the levels is considered as a perturbative metastable
state; however, a fictitious imaginary energy can be cal-
culated by consideration of possible back and forth tun-
neling (i.e., by regarding the instanton-antiinstanton pair
as a bounce-like configuration) in the barrier. Therefore
there exists a relation between the level splitting and this
imaginary part of metastable energy level, and has been
referred to as the Bogomolny-Fateyev relation based on
equilibrium thermodynamics [17]

ImEn = π (∆En)2 /4ω (En) , (25)

where ω (En) is the frequency of oscillations at en-
ergy level En. At finite temperature T the decay rate
Γ = 2 ImEn can be easily found by averaging over the
Boltzmann distribution

Γ (T ) =
2
Z0

∑
n

ImEn exp (−~Enβ) , (26)

where Z0 =
∑
n exp (−~Enβ) is the partition function

with the harmonic oscillator approximated eigenvalues
En =

(
n+ 1

2

)
Ω1. With the help of the Bogomolny-

Fateyev relation equation (25), the final result of the tun-
neling rate at a finite temperature T is found to be

Γ (T ) =
π

2Ω1

(
1− e−~Ω1β

)
(∆E0)2

I0
(

2q1e−~Ω1β/2
)
,

(27)

where ∆E0 and q1 are shown in equations (23, 24b).
I0 (x) =

∑
n=0 (x/2)2n

/ (n!)2 is the modified Bessel
function.

Now we discuss briefly the dissipation effect on spin
tunneling. For a spin tunneling problem, it is important to
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m =
~S2

�
1 + |cot θH |2/3

�

2K1V

�
1− ε+ 9K2

�
1 + |cot θH |2/3

�1/2

−K2
3−|cot θH |2/3

(1+|cot θH |2/3)1/2 + 2K2
3+|cot θH |2/3

(1+|cot θH |2/3)3/2

� , (30a)

consider the discrete level structure. It was quantitatively
shown that the phenomenon of MQC depends crucially on
the width of the excited levels in the right well [18]. Includ-
ing the effects of dissipation, the decay rate, in particular,
is given by [18–20]

Γn =
1
2

(∆En)2
∑
n′

Ωnn′

(En −En′)2 +Ω2
nn′

, (28)

where ∆En is the level splitting, n′ are the levels in the
other well and Ωnn′ is the sum of the linewidths of the
nth and n′th levels caused by the coupling of the system
to the environment. For the exact resonance conditions,
the temperature dependence of the decay rate is

Γ (T ) =
∑
n

(∆En)2

2Ωn
exp (−~Enβ) , (29)

where the level broadening Ωn contains all the details of
the coupling between the magnet and its environment. If
the width caused by the dissipative coupling sufficiently
large, the levels overlap, so that the problem is more or less
equivalent to the tunneling into the structureless contin-
uum. In this case, the results obtained in this paper should
be changed by including the dissipation. It is noted that
the purpose of this paper is to study the spin tunneling at
excited levels for single-domain FM particles in magnetic
field at sufficiently low temperatures. Strong dissipation is
hardly the case for single-domain magnetic particles [21],
and thereby our results are expected to hold. It has been
argued that the decay rate should oscillate on the applied
magnetic field depending on the relative magnitude be-
tween the width and the level spacing [12,13,18,20,22].
However, it is not clear, to our knowledge, what should
be the effect of finite temperature in the problem of spin
tunneling. The full analysis of spin tunneling onto the pre-
cession levels remains an open problem.

3.2 π/2 < θH < π

For π/2 < θH < π, the critical angle θc is in the range of
0 < θc < π/2, and η ≈

√
2ε/3. By applying the similar

method, the problem can be mapped onto a problem of
one-dimensional motion by integrating out φ, and for this
case the effective mass m and the effective potential U (δ)
in equation (15) are found to be

See equation (30a) above
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Fig. 2. The δ (= θ − θ0) dependence of the effective potential
E1 (δ) for θH = 3π/4 (MQT). Here, K2 = 0.001.

and U (δ) = 3U0q
2
(
1− 2

3q
)
, with q = 3δ/2

√
6ε, and

U0 =
27/2

33/2

K1V

~
ε3/2

|cot θH |1/3

1 + |cot θH |2/3

×

1− 15
2
K2

1(
1 + |cot θH |2/3

)1/2

 · (30b)

The dependence of the effective potential E1 (δ) on
δ (= θ − θ0) for θH = 3π/4 is plotted in Figure 2, and
~U (δ) = 2K1V E1 (δ). The problem now becomes one of
MQT, where the magnetization vector escapes from the
metastable state at δ = 0 through the barrier by quantum
tunneling.

The nonvacuum bounce configuration with an energy
E > 0 is found to be

δp =
2
3

√
6ε
[
a− (a− b) sn2 (ω2τ, k)

]
, (31)

where

ω2 =
1
2

√
3U0

2mε
√
a− c. (32)
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q2 =
225/4 × 35/4Sε5/4 |cot θH |1/6

1− ε
2 + 9

2K2

�
1 + |cot θH |2/3

�1/2

+ 1
4K2

2+9|cot θH |2/3

(1+|cot θH |2/3)1/2 +K2
3+|cot θH |2/3

(1+|cot θH |2/3)3/2

·

a (E) > b (E) > c (E) denote three roots of the cubic
equation

q3 − 3
2
q2 +

E

2U0
= 0. (33)

sn(ω2τ, k) is the Jacobian elliptic sine function of modulus

k =
√

a−b
a−c .

The classical action of the nonvacuum bounce config-
uration equation (31) is

Sp =
∫ β

−β
dτ

[
1
2
m

(
dδp
dτ

)2

+ U (δp)

]
= W + 2Eβ,

(34a)

with

W =
29/2

5× 33/2

√
mεU0 (a− c)5/2 [2 (k4 − k2 + 1

)
E (k)

−
(
1− k2

) (
2− k2

)
K (k)

]
. (34b)

The period t (E) of this case is found to be

t (E) =
√

2m
∫ b

c

dδ√
E − U (δ)

= 4

√
2εm

3U0 (a− c)K (k′) ,

(35)

where k′2 = 1−k2. Then the general formula equation (4)
gives the imaginary parts of the metastable energy levels
as ImE = ω(E)

π exp (−W ), where ω (E) = 2π
t(E) , and W is

shown in equation (34b).
Here we discuss the low energy limit of the imaginary

part of the metastable energy levels. For this case,

En =
(
n+ 1

2

)
Ω2, Ω2 =

√
1
mU

′′ (δ = 0) = 3
2

√
U0
mε , a ≈

3
2

(
1− k′2

4

)
, b ≈

(
3
4k
′2) (1 + 3

4k
′2), c ≈ − 3

4k
′2 (1 + 1

4k
′2),

and k′4 = 16E
27U0

� 1. After some calculations, we obtain
the imaginary part of the low-lying metastable excited
levels as ~ ImEn = qn2

n! (~ ImE0), where

See equation above.

The imaginary part of the metastable ground-state level is

~ ImE0 =
313/9 × 231/8

√
π

(K1V ) ε7/8S−1/2 |cot θH |1/4

1 + |cot θH |2/3

×

1− ε

4
+

9
4
K2

(
1 + |cot θH |2/3

)

− 1
8
K2

51− 2 |cot θH |2/3(
1 + |cot θH |2/3

)1/2

+
1
2
K2

3 + |cot θH |2/3(
1 + |cot θH |2/3

)3/2

 exp (−W0)

(37a)

where the WKB exponent is

W0 =
217/4 × 31/4

5
Sε5/4 |cot θH |1/6

×

1 +
ε

2
− 9

2
K2

(
1 + |cot θH |2/3

)1/2

+
1
4
K2

2 + 9 |cot θH |2/3(
1 + |cot θH |2/3

)1/2

−K2
3 + |cot θH |2/3(

1 + |cot θH |2/3
)3/2

 · (37b)

The decay rate at a finite temperature T is found to be

Γ (T ) = 2 ImE0

(
1− e−~Ω2β

)
exp

(
q2e−~Ω2β

)
. (38)

In Figure 3 we plot the temperature dependence of
the tunneling rate for the typical values of parameters for
nanometer-scale single-domain ferromagnets: S = 6000,
ε = 1 − H/Hc = 0.01, K2 = 0.01, and θH = 3π/4.
From Figure 3 one can easily see the crossover from purely
quantum tunneling to thermally assisted quantum tun-
neling. The temperature T (0)

0 characterizing the crossover
from quantum to thermal regimes can be estimated as
kBT

(0)
0 = ∆U/W0, where ∆U is the barrier height, and

W0 is the WKB exponent of the ground-state tunneling.
It can be shown that in the cubic potential

(
q2 − q3

)
, the
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Fig. 3. The temperature dependence of the relative decay rate
Γ (T ) /Γ (T = 0 K) for FM particles in a magnetic field with a
range of angles π/2 < θH < π. Here, S = 6000, ε = 1−H/Hc =
0.01, K2 = 0.01, and θH = 3π/4.

usual second-order phase transition from the thermal to
the quantum regimes occurs as the temperature is lowered.
The second-order phase transition temperature is given by

kBT
(2)
0 = ~ωb

2π , where ωb =
√

1
m |U ′′ (xb)| is the frequency

of small oscillations near the bottom of the inverted po-
tential −U (x), and xb corresponds to the bottom of the
inverted potential. For the present case, it is easy to obtain
that

kBT
(2)
0 =

21/4 × 31/4

π
(K1V )S−1ε1/4

|cot θH |1/6

1 + |cot θH |2/3

×

1− ε

2
+

9
2
K2

(
1 + |cot θH |2/3

)1/2

− 1
4
K2

21− 2 |cot θH |2/3(
1 + |cot θH |2/3

)1/2

+K2
3 + |cot θH |2/3(

1 + |cot θH |2/3
)3/2

 ,
and kBT

(0)
0 = (5π/18)kBT

(2)
0 ≈ 0.87kBT

(2)
0 . For a

nanometer-scale single-domain FM particle, the typical
values of parameters for the magnetic anisotropy coeffi-
cients are K1 = 108 erg/cm3, and K2 = 105 erg/cm3. The
radius of the FM particle is about 12 nm and the sublat-
tice spin is 106. In Figure 4, we plot the θH dependence of
the crossover temperature Tc for typical values of param-
eters for nanometer-scale ferromagnets at ε = 0.001 in a
wide range of angles π/2 < θH < π. Figure 4 shows that
the maximal value of Tc is about 0.26 K at θH = 1.76.
The maximal value of Tc as well as Γ is expected to
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Fig. 4. The θH dependence of the crossover temperature Tc

for π/2 < θH < π.

be observed in experiment. If ε = 0.001, we obtain that
Tc (135◦) v 0.23 K corresponding to the crossover from
quantum to classical regime. Note that, even for ε as small
as 10−3, the angle corresponding to an appreciable change
of the orientation of the magnetization vector by quantum
tunneling is δ2 =

√
6ε rad > 4◦. It is quite large enough to

distinguish easily between the two states for experimental
tests.

4 MQC and MQT for tetragonal crystal
symmetry

In this section, we study the FM particles with tetragonal
crystal symmetry in a magnetic field at arbitrarily directed
angles in the ZX plane, which has the magnetocrystalline
anisotropy energy

E (θ, φ) =K1 sin2 θ +K2 sin4 θ −K ′2 sin4 θ cos (4φ)
−M0Hx sin θ cosφ−M0Hz cos θ +E0, (39)

where K1, K2 and K ′2 are the magnetic anisotropy coeffi-
cients, and K1 > 0. In the absence of magnetic field, the
easy axes of this system are±ẑ forK1 > 0. And the field is
applied in the ZX plane as in the previous section. By us-
ing the dimensionless parameters defined in equation (8),
and choosing K ′2 > 0, we find that φ = 0 is an easy plane
for this system, at which equation (38) reduces to

E (θ, φ = 0) =
1
2

sin2 θ +
(
K2 −K

′
2

)
sin4 θ

−H cos (θ − θH) +E0, (40)
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where K
′
2 = K ′2/2K1. Assuming that

∣∣∣K2 −K
′
2

∣∣∣� 1, we
obtain the critical magnetic field and the critical angle as

Hc =
1[

(sin θH)2/3 + |cos θH |2/3
]3/2

×

1 +
4
(
K2 −K

′
2

)
1 + |cot θH |2/3

 ,
sin θc =

1(
1 + |cot θH |2/3

)1/2

×
[

1 +
8
3

(
K2 −K

′
2

) |cot θH |2/3

1 + |cot θH |2/3

]
· (41)

Introducing δ ≡ θ − θ0 (|δ| � 1 in the small ε limit), we
derive the energy E (θ, φ) as

E (δ, φ) =K
′
2 [1− cos (4φ)] sin4 (θ0 + δ)

+Hx (1− cosφ) sin (θ0 + δ) +E1 (δ) , (42)

where E1 (δ) is a function of only δ given by

E1 (δ) =
[

1
2
Hc sin (θc − θH) +

(
K2 −K

′
2

)
sin (4θc)

]
×
(
δ3 − 3δ2η

)
+
[
1
8
Hc cos(θc − θH) +

(
K2 −K

′
2

)
cos(4θc)

]
×
(
δ4 − 4δ3η + 6δ2η2 − 4δ2ε

)
+4
(
K2 −K

′
2

)
εδ2 cos (4θc) .

(43)

4.1 θH = π/2

For this case, we obtain that η ≈
√

2ε
[
1− 4

(
K2 −K

′
2

)]
,

and θc = π/2. Performing the Gaussian integration over φ,
we can map the spin system onto a problem of particle
with effective mass m moving in the one-dimensional po-
tential well U (δ). For this case,

m =
~S2

2V K1

[
1− ε+ 4

(
K2 −K

′
2

)
+ 16K

′
2

] ,
and

U (δ) =
K1V

4~

[
1 + 12

(
K2 −K

′
2

)]
δ2 (δ − 2η)2

. (44)

By applying the method similar to that in Section 3.1,
we obtain the low-lying tunnel splitting at degener-
ate excited levels as ~∆En = qn3

n! (~∆E0), where q3 =
29/2Sε3/2

1− ε2 +8(K2−K′2)+8K
′
2
. The energy shift of the ground

state is

~∆E0 =
213/4

√
π

(K1V ) ε5/4S−1/2

×
(

1− ε

4
+ 4K2

)
exp (−W0) . (45a)

where the WKB exponent is

W0 =
25/2

3
Sε3/2

[
1 +

ε

2
− 8

(
K2 −K

′
2

)
− 8K

′
2

]
. (45b)

Equations (45a, 45b) agree well with the result
obtained with the help of the vacuum instan-
ton solution [5]. And the final result of the de-
cay rate at a finite temperature T is Γ (T ) =
(∆E0)2 [

π
(
1− e−~Ω3β

)
/2Ω3

]
I0
(
2q3e−~Ω3β/2

)
, where

I0 (x) is the modified Bessel function.

4.2 π/2 < θH < π

For π/2 < θH < π, η ≈
√

2ε/3, the effective mass m is

m =
~S2

(
1 + |cot θH |2/3

)
2K1V

[
1− ε+ 16K

′
2 + 4

3

(
K2 −K

′
2

)
3−2|cot θH |2/3

1+|cot θH |2/3

] ,
(46a)

and the effective potential is U (δ) = 3U0q
2
(
1− 2

3q
)
, with

q = 3δ/2
√

6ε, and

U0 =
27/4

33/2

K1V

~
ε3/2

|cot θH |1/3

1 + |cot θH |2/3

×
[

1 +
4
3

(
K2 −K

′
2

) 7− 4 |cot θH |2/3

1 + |cot θH |2/3

]
· (46b)

For this case, the imaginary part of the low-lying
metastable excited levels is ~ ImEn = qn4

n! (~ ImE0), where

q4 = 225/4×35/4Sε5/4|cot θH |1/6

1− ε2 +8K
′
2+ 4

3(K2−K′2) |
cot θH |2/3−2

1+|cot θH |2/3

. The imaginary part

of the metastable ground-state level is

~ ImE0 =
313/9 × 231/8

√
π

(K1V ) ε7/8S−1/2 |cot θH |1/4

1 + |cot θH |2/3

×
[

1− ε

4
+ 4K

′
2 +

2
3

(
K2 −K

′
2

) 12 |cot θH |2/3 − 7

1 + |cot θH |2/3

]
× exp (−W0) . (47a)

where

W0 =
217/4 × 31/4

5
Sε5/4 |cot θH |1/6

×
[

1 +
ε

2
− 8K

′
2 −

4
3

(
K2 −K

′
2

) |cot θH |2/3 − 2

1 + |cot θH |2/3

]
·

(47b)

The final result of the decay rate at a finite temperature T
is Γ (T ) = 2 ImE0

(
1− e−~Ω4β

)
exp

(
q4e−~Ω4β

)
. And the

second-order phase transition temperature characterizing
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the crossover from quantum to thermal regimes is found
to be

kBT
(2)
0 =

21/4 × 31/4

π
(K1V )S−1ε1/4

|cot θH |1/6

1 + |cot θH |2/3

×
[

1− ε

2
+ 8K

′
2 +

4
3

(
K2 −K

′
2

) 5− 3 |cot θH |2/3

1 + |cot θH |2/3

]
·

5 MQC and MQT for hexagonal crystal
symmetry

In this section, we study the hexagonal spin system whose
magnetocrystalline anisotropy energy Ea (θ, φ) at zero
magnetic field can be written as

Ea (θ, φ) =K1 sin2 θ +K2 sin4 θ +K3 sin6 θ

−K ′3 sin6 θ cos (6φ) , (48)

where K1, K2, K3, and K ′3 are the magnetic anisotropic
coefficients. The easy axes are ±ẑ for K1 > 0. When we
apply an external magnetic field at an arbitrarily directed
angle in the ZX plane, the total energy of this system is
given by

E (θ, φ) =Ea (θ, φ)−M0Hx sin θ cosφ
−M0Hz cos θ +E0, (49)

By choosing K ′3 > 0, we take φ = 0 to be the easy plane,
at which the potential energy can be written in terms of
the dimensionless parameters as

E (θ, φ = 0) =
1
2

sin2 θ +K2 sin4 θ +
(
K3 −K

′
3

)
sin6 θ

−H cos (θ − θH) +E0, (50)

where K3 = K3/2K1 and K
′
3 = K ′3/2K1.

Under the assumption that
∣∣K2

∣∣, ∣∣∣K3 −K
′
3

∣∣∣ � 1, we

obtain the dimensionless critical field Hc and the critical
angle θc as

Hc =
1[

(sin θH)2/3 + |cos θH |2/3
]3/2

×

1 +
4K2

1 + |cot θH |2/3
+

6
(
K3 −K

′
3

)
(

1 + |cot θH |2/3
)2

 ,
sin θc =

1(
1 + |cot θH |2/3

)1/2

1 +
8
3
K2

|cot θH |2/3

1 + |cot θH |2/3

+8
(
K3 −K

′
3

) |cot θH |2/3(
1 + |cot θH |2/3

)2

 · (51)

By introducing a small variable δ ≡ θ − θ0

(|δ| � 1 in the limit of ε� 1), the total energy becomes

E (δ, φ) =K
′
3 [1− cos (6φ)] sin6 (θ0 + δ)

+Hx (1− cosφ) sin (θ0 + δ) +E1 (δ) , (52)

where E1 (δ) is a function of only δ given by

E1(δ) =
[
1
2
Hc sin (θc−θH) +K2 sin (4θc) + 4

(
K3 −K

′
3

)
×
(
5 sin3 θc cos3 θc − 3 sin5 θc cos θc

)] (
δ3 − 3δ2η

)
+
[

1
8
Hc cos (θc − θH) +K2 cos (4θc) + 3

(
K3 −K

′
3

)
× sin2 θc

(
sin4 θc − 10 sin2 θc cos2 θc + 5 cos4 θc

)]
×
(
δ4 − 4δ3η + 6δ2η2 − 4δ2ε

)
+ εδ2

[
4K2 cos (4θc)

+12
(
K3 −K

′
3

)
sin2 θc

(
sin4 θc − 10 sin2 θc cos2 θc

+5 cos4 θc

) ]
· (53)

5.1 θH = π/2

For θH = π/2, i.e., the external magnetic field is ap-
plied perpendicular to the anisotropy axis, we obtain that
θc = π/2 and η =

√
2ε
[
1− 4K2 − 12

(
K3 −K

′
3

)]
. The

spin system can be mapped onto a particle with effec-
tive mass m moving in the one-dimensional potential well
U (δ), where

m =
~S2

2VK1

[
1− ε− 4K2 − 6

(
K3 −K

′
3

)
− 36K

′
3

] ,
(54a)

and

U (δ) =
K1V

4~

[
1 + 12K2 + 30

(
K3 −K

′
3

)]
δ2 (δ − 2η)2 .

(54b)

By applying the similar method, we obtain that the energy
shift of the nth excited level is ~∆En = qn5

n! (~∆E0), where

q5 =
29/2Sε3/2

1− ε
2 + 8K2 + 24

(
K3 −K

′
3

)
+ 18K

′
3

·

The energy shift of the ground state is

~∆E0 =
213/4

√
π

(K1V ) ε5/4S−1/2

×
[
1− ε

4
− 6

(
K3 −K

′
3

)
+ 9K

′
3

]
exp (−W0) , (55a)



R. Lü et al.: Spin tunneling properties in mesoscopic magnets: effects of a magnetic field 489

m =
~S2

�
1 + |cot θH |2/3

�

2K1V

�
1− ε+ 4

3K2
3−2|cot θH |2/3

1+|cot θH |2/3 + 2
�
K3 −K′3

�
3−4|cot θH |2/3

(1+|cot θH |2/3)2 + 36K
′
3

1

1+|cot θH |2/3

� ,

q6 =
225/4 × 35/4Sε5/4 |cot θH |1/6

1− ε
2 −

4
3K2

2−|cot θH |2/3

1+|cot θH |2/3 − 4
�
K3 −K′3

�
2−3|cot θH |2/3

(1+|cot θH |2/3)2 + 18K
′
3

1

1+|cot θH |2/3

· (56c)

and the WKB exponent is

W0 =
25/2

3
Sε3/2

[
1 +

ε

2
− 8K2 − 24

(
K3 −K

′
3

)
− 18K

′
3

]
·

(55b)

The decay rate at a finite temperature T is

Γ (T ) = (∆E0)2 [π (1− e−~Ω5β
)
/2Ω5

]
I0
(

2q5e−~Ω5β/2
)
,

where

Ω5 = 23/2K1V

~S
ε3/2

[
1− ε

2
+ 4K2 + 6

(
K3−K

′
3

)
+ 18K

′
3

]
·

5.2 π/2 < θH < π

For this case, the effective mass m and the effective po-
tential U (δ) are

See equation above

and

U (δ) =
K1V

~
|cot θH |1/3

1 + |cot θH |2/3

1 +
4
3
K2

7− 4 |cot θH |2/3

1 + |cot θH |2/3

+2
(
K3 −K

′
3

) 11− 16 |cot θH |2/3(
1 + |cot θH |2/3

)2

 δ2
(√

6ε− δ
)
·

The imaginary part of the metastable excited levels is
~ ImEn = qn6

n! (~ ImE0), and the imaginary part of the
ground state is

~ ImE0 =
37/9 × 231/8

√
π

(K1V ) ε7/8S−1/2 |cot θH |1/4

1 + |cot θH |2/3

×

1− ε

4
+

2
3
K2

12 |cot θH |2/3 − 7

1 + |cot θH |2/3
2
(
K3 −K

′
3

)

× 9− 13 |cot θH |2/3(
1 + |cot θH |2/3

)2 + 9K
′
3

1

1 + |cot θH |2/3

 exp (−W0) ,

(56a)

where the WKB exponent is

W0 =
217/4 × 31/4

5
Sε5/4 |cot θH |1/6

×

1− ε

4
+

4
3
K2

2− |cot θH |2/3

1 + |cot θH |2/3
+ 4

(
K3 −K

′
3

)

× 2− 3 |cot θH |2/3(
1 + |cot θH |2/3

)2 − 18K
′
3

1

1 + |cot θH |2/3

 , (56b)

and

See equation (56c) above.

The final result of the decay rate at a finite temperature
T is Γ (T ) = 2 ImE0

(
1− e−~Ω6β

)
exp

(
q6e−~Ω6β

)
, where

Ω6 = 25/4 × 31/4K1V

~S
ε1/4

|cot θH |1/6

1 + |cot θH |2/3

×
[

1− ε

2
+

4
3
K2

5− 3 |cot θH |2/3

1 + |cot θH |2/3

+ 2
(
K3 −K

′
3

) 7− 10 |cot θH |2/3(
1 + |cot θH |2/3

)2

+18K
′
3

1

1 + |cot θH |2/3

]
·

The second-order phase transition temperature character-
izing the crossover from quantum to thermal regimes is
found to be

kBT
(2)
0 =

21/4 × 31/4

π
(K1V )S−1ε1/4

|cot θH |1/6

1 + |cot θH |2/3

×
[

1− ε

2
+

4
3
K2

5− 3 |cot θH |2/3

1 + |cot θH |2/3

+ 2
(
K3 −K

′
3

) 7− 10 |cot θH |2/3(
1 + |cot θH |2/3

)2

+18K
′
3

1

1 + |cot θH |2/3

]
·
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6 Conclusions

In summary, we have theoretically investigated the quan-
tum tunneling of the magnetization vector between ex-
cited levels in single-domain FM nanoparticles in the pres-
ence of an external magnetic field at arbitrary angle. We
consider the FM particles with the general structure of
magnetocrystalline anisotropy. By calculating the nonva-
cuum instanton in the spin-coherent-state path-integral
representation, we obtain the analytic formulas for the
tunnel splitting between degenerate excited levels and the
imaginary parts of the metastable excited levels in the low
barrier limit for the external magnetic field perpendicular
to the easy axis (θH = π/2), and for the field at an angle
between the easy and hard axes (π/2 < θH < π). The tem-
perature dependences of the decay rates are clearly shown
for each case. The low-energy limit of our results agrees
well with that of ground-state spin tunneling. One impor-
tant conclusion is that the tunneling rate and the tunnel
splitting at excited levels depend on the orientation of the
external magnetic field distinctly. Even a small misalign-
ment of the field with θH = π/2 orientation can com-
pletely change the results of the tunneling rates. Another
interesting conclusion concerns the field strength depen-
dence of the WKB exponent in the tunnel splitting or the
tunneling rate. It is found that in a wide range of angles,
the ε

(
= 1−H/Hc

)
dependence of the WKB exponent is

given by ε5/4 (see Eq. (37b)), not ε3/2 for θH = π/2 (see
Eq. (21b)). As a result, we conclude that both the ori-
entation and the strength of the external magnetic field
are the controllable parameters for the experimental test
of the phenomena of quantum tunneling and coherence of
the magnetization vector between excited levels in single-
domain FM nanoparticles at sufficiently low temperatures.
If the experiment is to be performed, there are three con-
trol parameters for comparison with theory: the angle of
the external magnetic field θH , the strength of the field in
terms of ε, and the temperature T . Furthermore, the θH
dependence of the crossover temperature Tc and the angle
corresponding to the maximal value of Tc are expected to
be observed in further experiments.

In order to avoid the complications due to distri-
butions of particle size and shape, some groups have
tried to study the temperature and field dependence of
magnetization reversal of individual magnets. Recently,
Wernsdorfer and co-workers have performed the switch-
ing field measurements on individual ferrimagnetic and in-
sulating BaFeCoTiO nanoparticles containing about 105–
106 spins at very low temperatures (0.1–6 K) [8]. They
found that above 0.4 K, the magnetization reversal of
these particles is unambiguously described by the Néel-
Brown theory of thermal activated rotation of the parti-
cle’s moment over a well defined anisotropy energy bar-
rier. Below 0.4 K, strong deviations from this model are
evidenced which are quantitatively in agreement with the
predictions of the MQT theory without dissipation [4].
The BaFeCoTiO nanoparticles have a strong uniaxial
magnetocrystalline anisotropy [8]. However, the theoret-
ical results presented here may be useful for checking the
general theory in a wide range of systems, with more gen-

eral magnetic anisotropy. The experimental procedures on
single-domain FM nanoparticles of Barium ferrite with
uniaxial symmetry [8] may be applied to the systems
with more general symmetries. Note that the inverse of
the WKB exponent B−1 is the magnetic viscosity S at
the quantum-tunneling-dominated regime T � Tc stud-
ied by magnetic relaxation measurements [1]. Therefore,
the quantum tunneling of the magnetization should be
checked at any θH by magnetic relaxation measurements.
Over the past years a lot of experimental and theoretical
works were performed on the spin tunneling in molecular
Mn12-Ac [23] and Fe8 [24,20] clusters having a collective
spin state S = 10 (in this paper S = 103−105). These mea-
surements on molecular clusters with S = 10 suggest that
quantum phenomena might be observed at larger system
sizes with S � 1. Further experiments should focus on the
level quantization of collective spin states of S = 102–104.

The theoretical calculations performed in this paper
can be extended to the AFM particles, where the relevant
quantity is the excess spin due to the small noncompen-
sation of two sublattices. Work along this line is still in
progress. We hope that the theoretical results presented
in this paper may stimulate more experiments whose aim
is observing quantum tunneling and quantum coherence
in nanometer-scale ferromagnets.
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Zhang, F. Luis, J. Bartolomé, J. Tejada, R. Ziolo, Eu-
rophys. Lett. 35, 301 (1996); L. Thomas, F. Lionti, R.
Ballou, D. Gatteschi, R. Sessoli, B. Barbara, Nature (Lon-
don) 383, 145 (1996); J.R. Friedman, M.P. Sarachik, J.
Tejada, R. Ziolo, Phys. Rev. Lett. 76, 3820 (1996); J.M.
Hernández, X.X. Zhang, F. Luis, J. Tejada, J.R. Friedman,
M.P. Sarachik, R. Ziolo, Phys. Rev. B 55, 5858 (1997);
F. Lionti, L. Thomas, R. Ballou, B. Barbara, A. Sulpice,
R. Sessoli, D. Gatteschi, J. Appl. Phys. 81, 4608 (1997);
D.A. Garanin, E.M. Chudnovsky, Phys. Rev. B 56, 11102
(1997).

24. A.-L. Barra, P. Debrunner, D. Gatteschi, C.E. Schulz,
R. Sessoli, Europhys. Lett. 35, 133 (1996); C. Sangregorio,
T. Ohm, C. Paulsen, R. Sessoli, D. Gatteschi, Phys. Rev.
Lett. 78, 4645 (1997).


